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ABSTRACT 
 
This paper deals with the wavelength assignment 
problem in WDM all-optical networks. This problem 
can be abstracted as a multicoloring problem on a 
weighted conflict graph. The main focus of this work is 
to obtain the relationship between the wavelength 
assignment and the multicoloring problems. We first, 
establish a new result regarding multicoloring problem 
in which we provide a tight bound for any graph. 
Afterwards, considering the off-line wavelength 
assignment problem in all-optical networks particularly 
for certain routing patterns, we show that coloring all 
paths of this routing is the same as the multicoloring 
problem of the associated conflict graph. 
 
Keywords: WDM all-optical network; Routing; Graph 
theory, Graph multicoloring; Approximation algorithm. 
 
 
1  INTRODUCTION 
 
In all-optical networks that use the wavelength division 
multiplexing (WDM) technology, each optical fiber can 
carry several signals, each on a different wavelength. 
Thus, a typical problem (known as the wavelength 
routing problem) is to accept connection requests in the 
network. That is, for each connection request, to find a 
path in the network and to allocate it a wavelength such 
that no two paths with the same wavelength share a link. 
In order to make an optimal use of the available 
bandwidth, it is important to control two parameters: the 
maximum number of paths that cross a link (the load) 
and the total number of wavelengths used. In this paper 
we will consider only the wavelength assignment 
problem (also known as the path coloring problem) 
which consists, for a set of paths, in assignating to each 
path a wavelength (color). Paths of the same color must 
be edge-disjoint. Our objective is to minimize the 
number of colors used. 
 
An optical network is often modelized by a directed 
graph where the vertices represent the optical switches 
and the edges represent the optical fibers. Let G=(V,E)  

 
be a directed graph (digraph) with vertex set V and 
(directed) edge set E. We will consider only symmetric  
digraphs (i.e. (x,y) ∈E ⇒ (y,x) ∈ E), but they will be 
drawn as undirected graphs. An instance I is a collection 
of requests (i.e. pairs of nodes that request a connection 
in the network):  
I={(xi ,yi )| xi ,yi ∈ V(G)}. Note that a request can 
appear more than once in I. A routing  R is a multiset of 
dipaths that realize I, i-e. to each connection of I 
corresponds a dipath in R. 
The load L(G,R,e) of an edge e for a routing R is the 
number of dipaths that cross e. The load L(G,R) of a 
routing R is the maximum of the load of any edge: 
L(G,R)= max

e E∈
 L(G,R,e). 

The wavelength number λ(G,R) for a routing R is the 
minimum number of wavelengths needed by the dipaths 
of R in such a way that no two paths sharing an edge get 
the same wavelength. The wavelength number is also 
the weighted chromatic number of the weighted conflict 
graph, where each vertex corresponds to a path of  R 
such that the weight of each vertex is the multiplicity of 
the associated path and where two vertices are adjacent 
if the corresponding paths share a common edge in G. 
Observe that, for any routing, the load is a lower bound 
on the wavelength number. A coloring algorithm A is 
said to be a p-approximation if for any routing R, the 
number of wavelength λA(G,R) needed by the algorithm 
is at most at a factor p from the optimal, that is, λA (G,R) 
≤  p. λ(G,R). 
The wavelength routing problem has been extensively 
studied and proved to be a difficult problem, even when 
restricted to simple network topologies (for instance, it 
is NP-complete for trees and for cycles [2]). Much work 
has been done on approximation or exact algorithms to 
compute the wavelength number for particular networks 
or for particular instances [1,10]. 
In mesh networks, for the wavelength routing problem, 
the best known algorithm [9] has an approximation ratio 
poly(ln(lnN)) for a square undirected grid of order N, 
where poly is a polynom. For the coloring problem on 
meshes, [8] showed that it is NP-complete and NoAPX. 
Moreover, it is proved in [8] that this problem remains 
NP-complete even if restricted to line-column or 
column-line paths.  



 The paper is organized as follows. The next Section 
focuses on the multicoloring problem of a general graph. 
In Section 3, we show that wavelength assignment 
problem on some graphs is the same as the 
multicoloring problem of the associated conflict graph. 
Section 4 give methods to color class of routing, called 
(α,β) LC-routing, based on the vertices multicoloring of 
weighted conflict graph. In Section 5 and Section 6, we 
extend the ressult of Section 4 to line-column routings 
in toroidal meshes and to (line-column, column-line) 
routings in meshes. 
 
2   MULTICOLORING 
Given a graph G=(V,E), we define its chromatic number 
to be the smallest number of colors needed such that 
every vertex is assigned a color and no two vertices 
connected by an edge receive the same color. The 
independence number of G is defined to be the largest 
subset of vertices such that no two of them are 
connected by an edge in G. We use χ(G) and α(G) to 
denote the chromatic number and the independence 
number of G. 
A weighted graph of G is a pair Gω =(G, ω) where ω is 
a weight function that assigns non-negative integer ω(v) 
to each vertex v of G, ω(v) is called the weight of v. A 
vertex multicoloring of the weighted graph Gω consists 
of a set of colors C and a function Ψ that assigns to each 
v ∈ V a subset of colorsΨ(v) ⊂ C such that: 

i) ∀ v ∈V, |Ψ(v)|= ω(v), i-e. the vertex v gets ω(v)   
distinct colors. 
ii) If (u,v) ∈ E then Ψ(u) ∩ Ψ(v)=∅, i-e. two adjacent 

vertices get disjoint sets of colors. 
 

The weighted chromatic number, denoted χp(Gω), of Gω 
is the minimum number of colors needed to color all 
vertices of Gω so that conditions i) and ii) above are 
satisfied.  
The multicoloring problem (also known as weighted 
coloring [3] or ω-coloring [7] is NP-hard in general. 
Hence, it would be interesting to find algorithms that 
approximate the weighted chromatic number. A vertex 
subset K of Gω is called a clique if every pair of vertices 
in K are adjacent. The weight of any clique in Gω is 
defined as the sum of the weights of the vertices 
forming that clique. The weighted clique number of Gω, 
denoted W(Gω)  (for short, we use W), is defined to be 
the maximum over the weights of all cliques in Gω. 
Then the following theorem states the relationship 
between these parameters. 
 
Theorem 1 
For any graph G=(V,E) such that |V| ≥ 2 and |E| ≥ 2, we 
have 
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Proof 

Let G=(V,E) be a general graph and Gω its weighted 
graph. First, the following inequality is immediate from 
the above definitions. 
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Hence, it remains to show that 
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)( GWGp χχ ω ≤  

To prove this, we describe an algorithm that proceeds in 
two steps. 
 
Step 1: 
First, we take a proper coloring of G with χ(G)  colors 
that we call the basic coloring of Gω. Next, we assume 
that Gω is connected, since disconnected components of 
Gω can be independently colored without any color 

conflict. Let 
2

Wl = . Every vertex v is assigned the first 

hues interval [1, l ] of the base color of the vertex. Note 
that a vertex v is called heavy if ω(v) > l  and is called 
light if ω(v) ≤ l . Hence, only the heavy vertices remain 
to be completely colored after this step and the light 
vertices are completely colored and are deleted from Gω. 
Let Hω' denote the remaining graph obtained after this 
process where the new weight of each vertex v∈ Hω' is 
ω'(v) = ω(v)- l . We observe that Hω' contains only 
isolated vertices, because if we suppose that there exist 
two heavy adjacent vertices v1 and v2 in Hω' then, we get 

lWvvl 2)()(2 21 =≤+< ωω , a contradiction. 
 
Step 2:  
Consider vj a vertex of Hω'  having  j as base color in Gω. 
Then, according to Step 1, vj is a heavy vertex in Gω and 
all its neighbors must be light vertices in Gω. Let Ni be 
the set of neighbors vertices of vj having i≠j as base 
color in Gω. Let vi∈Ni such that ω(vi)= )(max v

iNv
ω

∈
. 

Further, we have  ω(vj )= jl ε+ and  ω(vi )= il ε−  where 

0 ≤ εj, εi ≤ l . As ω(vj) +ω(vi) ≤ W=2 l , we get  εj ≤  εi. 
Then vj can borrow from εi  colors available in the [1, l ] 
hues of base color i for coloring the remaining weight 
on vj . 
 Consequently, for multicoloring all vertices of Gω , we 
 use at least χ(G). Thus, 

)(.
2

)( GWGp χχ ω ≤  

 
3  WAVELENGTH ASSIGNMENT AND  
GRAPH MULTICOLORING 
 
The wavelength assignment problem (WAP) in a WDM 
all-optical network is generally modelized as a graph 
theoretical coloring. In this paper, we describe a new 
approach where the WAP is abstracted as a 
multicoloring problem on a weighted conflict graph. 



Given a digraph G and a routing R represented by a set 
of pairs (P,M(P)) where P is a dipath on G and M(P) its 
multiplicity, the weighted conflict graph Gcp=(Vcp,Ecp ) 
of R is a weighted graph where each vertex vp 
corresponds to a path P of R, two vertices are adjacent if 
the corresponding paths share a common edge in G and 
where the weight ω(vp) of vertex vp is the multiplicity 
M(P) of the corresponding path P in R  (See FIGURE 1). 
 

 
 
 
 

 
   

 

                        
 
 
FIGURE 1:  (a):  A SET OF DIPATHS ON A GRAPH. 
(b): THE CORRESPONDING CONFLICT GRAPH. 
 
Proposition 1 
Given a graph G, for any routing  R  in G, we have 

1. λ(G, R) = χω(Gcp), 
2. L(G, R) ≤ W(Gcp). 

 
Proof 
Let G be a graph and let R be a routing in G. 

1. Is immediate from the above definitions. 
2. There exists e∈E such that L(G,R)=L(G,R,e). 

Let K={(P,M(P))∈ R|e∈ P} be a subset of R. 
As L(G,R) is the number of paths that cross e, 
we get L(G,R) = ∑

∈KP

PM )( . Consider 

Q={(vp ,ω(vp ))∈Vcp| P∈ K} be a subset of 
Vcp where each vertex vP corresponds to a 
path P of K and ω(vp )=M(P). We observe 
that Q is a clique of Gcp because for any pair 
of vertices (vP,vP')∈ Q, the corresponding 
paths (P,P')∈ K are in conflict (e∈ P∩P'). 
Further, we have 

L(G,R) = ∑
∈KP

PM )( = ∑
∈Qv

p
P

v )(ω  

Thus,  
L(G, R) ≤  W 

In general, determining the wavelength number is an 
intractable problem. For this reason, in what follows, we 
study various usual graph families on which we can 
determine the relationship between the wavelength 
assignment and the multicoloring problems. 
 
3.1  PATH AND CYCLE GRAPH 
By Pn  (resp. Cn) we denote the path graph (resp. cycle 
graph) of order n, with vertex set Vn={0,1,...,n-1}. 
For a graph G, we write Gp for the pth power of G i-e. 
the graph on the same vertex set than G and with edges 
linking vertices at distance at most p in G. 
 
Theorem 2 
For any routing R on the path graph Pn with load L, we 
have L = W. 
Proof 
Let Gcp(R) be the weighted conflict graph of R, we have 
L(Pn,R) = λ(Pn,R) and λ(Pn,R) = χω(Gcp) ≥ W. Then, 
Proposition 1 gives us  L = W. 
 
Proposition 2 
There exists a routing  R of load L on the cycle Cn such 
that L < W. 
 
Proof 

Let R={((0, ⎥⎥
⎤

⎢⎢
⎡

2
n ),k),((2,n-1),k),((n-2,1),k)} be a routing 

in Cn where k is the multiplicity of each path. We 
observe that L(Cn, R) = 2k but the conflict graph of R is 
a triangle so that each vertex weight are k. Hence, the 
weighted clique number of this triangle is W = 3k. 
Consequently,  L(Cn, R) < W (See FIGURE 2). 
 

 
FIGURE 2: LEFT: A 3-PATH SET ON CYCLE C6. 
RIGHT: THE CORRESPONDING WEIGHTED 
GRAPH CONFLICT. WE HAVE L=2 AND ω=3. 
 
Now, consider a particular routing Rl in Cn such that 
each path has l as length. 
 
Proposition 3 
The path coloring problem of Rl in Cn is the same as the 
multicoloring problem of the graph Cn

l. 
 
Proof 

1

2
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Denote by Pi a path of Rl which starts at vertex i. 
Observe that for every vertex i∈Vn , the path Pi is in 
conflict with all paths Pj with i-l+1(mod n) ≤ j ≤ i+l-1 
(mod n). Thus, it is easy to verify that the associated 
conflict graph is the (l -1)th power cycle Cn

l-1. 
 
3.2 MESH, TOROIDAL MESH 
 
The coloring problem on meshes is NP-complete and 
NoAPX as stated in the Introduction. Moreover, it is 
proved that this problem remains NP-complete even if 
restricted to line-column or column-line paths. For this 
reason, here we study only the LC-routing on the mesh 
and on the toroidal mesh. 
 
Definition 1 
The 2-dimensional symmetric directed mesh Mm,n = 
(V(Mm,n ),E(Mm,n)) has vertex set V(Mm,n ) = {(i,j) | 1 ≤ i 
≤ m; 1 ≤ j≤ n} and edge set E(Mm,n) = ER∪EL∪EU∪ED 
where:  

• ER = {((i,j),(i,j+1)), 1 ≤ i ≤ m; 1 ≤ j ≤ n-1} 
right edge (R-edge for short) set. 

• EL = {((i,j),(i,j-1)), 1 ≤ i ≤ m; 2 ≤ j ≤ n} left 
edge (L-edge) set.  

• EU = {((i,j),(i-1,j)), 2 ≤ i ≤ m; 1 ≤ j ≤ n} up 
edge (U-edge) set. 

• ED = { ((i,j),(i+1,j)), 1 ≤ i ≤ m-1; 1 ≤ j ≤ n} 
down edge (D-edge) set. 

 The toroidal mesh is a mesh on the torus, i.e. the 2-
dimensional toroidal mesh TMm,n has vertex set V = 
V(Mm,n) and edge set E = E(Mm,n)∪ET, where ET 
consists of 

• R-edges: {((i,n),(i,1)), 1 ≤ i ≤ m }, 
• L-edges: { ((i,1),(i,n)), 1 ≤ i ≤ m }, 
• D-edges: {((m,j),(1,j)), 1 ≤ j ≤ n }, 
• U-edges: {((1,j),(m,j)), 1 ≤ j ≤ n}. 

 
Definition 2  
Let X∈{R,L,U,D}, Y∈{R,L} and Z∈ {U,D}. Let G be 
the mesh Mm,n or the toroidal mesh TMm,n. 

• An X-path in G is a path using only X-edges.  
• An YZ-path in G is a path formed by a 

concatenation of a Y-path with a Z-path. 
• A Line-Column routing or LC-routing in G is 

a routing which only consists of X-paths and 
YZ-paths. 

• An XY-routing is a line-column routing which 
contains only XY-paths. 

•  An (LC,CL)-routing in G is a routing which 
contains only YZ-paths and ZY-paths. 

•  An (α,β) LC-routing is a LC-routing where 
each path consists of exactly α horizontal 
edges and β vertical edges.  

• An (α,*) LC-routing is a LC-routing where 
each path consists of exactly α horizontal 
edges. 

• The XY-path coloring problem is the path 
coloring problem restricted to XY-routings. 

Notice that a LC-routing is composed of 8 types of 
paths, namely: R, L, U, D, RD, RU, LD, LU. But to 
simplify, in the following, we will consider a R-path or 
a D-path to be a RD-path and a L-path or a U-path to be 
an LU-path. Thus we only deal with YZ-paths. 
 
Proposition 4 
If R is a LC-routing with load L on the mesh  Mm,n then 
L=W. 
 
Proof 
Let R be a LC-routing on Mm,n with load L and let P∈ R. 
We observe that P is formed by concatenation of a 
horizontal path PH and a vertical path PV. Then we can 
write P = (PH,PV) and R = RH × R V where RH (resp.  RV ) 
is a set of horizontal paths (resp. vertical paths). Further, 
RH  (resp. RV ) may be partitioned into m sets of 
horizontal paths RH

i on the path graph Pn
i with 1 ≤ i ≤ m 

(resp. n sets of vertical paths RV
j on the path graph Pm

j 
with 1 ≤ j≤ n. It is easy to verify that L = 
max(L(RH),L(RV)) where L(RH) = 

1
max

i m≤ ≤
(L(RH

i, Pn
i)) 

and L(RV) = 
1
max

j n≤ ≤
(L(RV

j, Pm
j)) . 

Now, suppose that there exist three paths P1, P2, P3 of 
different type which are in conflict between them. Since, 
if P1 is of type RD then P2 is of type RU or of type LD. 
If P2 is of type RU then P3 must be of type LU a 
contradiction because P1 is in conflict with P3. 
Consequently, if three paths are in conflict between 
them then at least two paths among them are of the same 
type and there exists an edge crossed by these paths. 
This means that, if K is a clique of weighted conflict 
graph of R then all paths corresponding to vertices of K 
belong to at most two different types of paths. In other 
term, if RK is the set of paths corresponding to vertices 
of K then RK = {XY-paths|XZ-paths} where X∈{R,L} 

and Y≠ Z∈{D,U} or RK  = {XY-paths|ZY-paths} where 
X≠Z∈{R,L} and Y∈{D,U}. Moreover, as RK= RH

i× RV
j 

with RH
i is a routing on the path graph Pn

i and RV
j is a 

routing on the path graph Pm
j, Theorem 2 gives ω(K) = 

max(L(RH
i,Pn

i),L(RV
j,Pm

j)). Thus, 
 
W=

,
max

i j
(L(RH

i,Pn
i),L(RV

j, Pm
j))=max(L(RH),L(RV))= L 

 
4  COLORING (α,β) LC-ROUTINGS 
 
Proposition 5 
The (α,β) XY-path coloring problem in Mm,n is the same 
as the multicoloring problem of the graph 1 1

m nP Pα β
β α

− −
− − .   

 
Proof 
Without loss of generality, we consider R a (α,β)  RD-
routing in Mm,n . We denote by Pij the path in R which 
starts at vertex (i,j), i-e. 
Pij=(i,j)(i,j+1)...(i,j+α)(i+1,j+α)...(i+β,j+α) where 1 ≤ i ≤ 
m-β and 1 ≤ j ≤ n-α. Let Gcp = (Vcp,Ecp) be the 



corresponding weighted conflict graph of R such that 
for each path Pij∈R, we associate the vertex (i,j)∈Vcp. 
Then Vcp={1...m-β}×{1...n-α}. Note that the weight of 
(i,j) is ω((i,j))=M(Pij) where M(Pij) is the multiplicity of 
the path Pij. Further, for any 1 ≤ k ≤ β -1 and 1 ≤ l  ≤ α -
1 we have ((i,j),(i+k,j))∈Ecp and ((i,j),(i,j+ l ))∈Ecp 

because the path Pij is in conflict with P(i+k)j and with 
Pi(j+l). Thus it is easy to observe that Gcp= 1 1

m nP Pα β
β α

− −
− − . 

 
In the following, we give some results concerning 
particular values of α and β. Note that, for symmetrical 
reason, α and β play the same role. 
 
4.1 α=1 AND β IS ARBITRARY 
 
Proposition 6 
There exist (1,*) LC-routings R on the mesh Mm,n that 

require  ⎡ 5
4

L(Mm,n, R)⎤ colors. 

Proof 
Let R be the (1,*) LC-routing of load L=2k obtained by 
taking k copies of each path given in the FIGURE 3. 
 

               
 
FIGURE 3: THE (1,*) LC-ROUTING ON THE MESH 

WITH L=2k AND λ=⎡
5
4

L⎤. 

 It is easy to see that the corresponding weighted 
conflict graph is a cycle on five vertices. Then, 
according to [7], the path coloring of R requires 

⎡
5
4

L(Mm,n, R)⎤  colors. Thus, the proposition is proved. 

 
Proposition 7 
There exists a polynomial time algorithm that colors any 
(1,*) LC-routing R on the mesh Mm,n using at most 2 
L(Mm,n, R) colors. 
 
Proof 
Consider the RD-paths and LD-paths of R. As a path on 
column c can not conflict with a path on column c'≠c 
thus, coloring RD-paths and LD-paths of R is equivalent 
to coloring paths on each column separately. And it is 
straightforward that coloring a set of paths with load L 
on a linear graph can be done optimally by a polynomial 
time algorithm using at most L colors. Thus, we need at 
most L(Mm,n, R) colors  for coloring the RD-paths and 

LD-paths. Again, for symmetrical reasons, we use a 
new set of L(Mm,n, R) colors for coloring the RU-paths 
and LU-paths of R. Therefore, for coloring all paths of 
R, we use at most 2 L(Mm,n, R) colors. 
 
4.2 α=2 AND β=2 
 
Proposition 8 
There exist (2,2) LC-routings R on the mesh Mm,n that 

require  ⎡ 7
6

L(Mm,n, R)⎤ colors. 

Proof 
Let M7,6=(V,E) be a mesh with vertex  set V={(i,j)|1 ≤ 
i,j ≤ 7}. Let 
R={((3,1),(1,3));((3,1),(5,3));((4,1),(6,3));((5,1),(3,3)); 
((5,2),(7,4));((4,5),(2,3));((4,2),(6,4))} be a (2,2) LC- 
routing of load L=2k where k is the multiplicity number 
of each path of R  (See FIGURE 4). 
 

                
 
FIGURE 4 : THE L-ROUTING ON THE MESH 

WITH L=2k AND λ=⎡
7
6

L⎤. 

 
Moreover, The corresponding weighted conflict graph is 
an odd simple cycle of order 7. Then, according to [7], 

the path coloring of R requires ⎡ 7
6

L(Mm,n, R)⎤ colors. 

 
Proposition 9 
There exists a polynomial time algorithm that colors any 
(2,2) LC-routing R on the mesh Mm,n using at most 
2L(Mm,n,R) colors. 
 
Proof 
Consider a sub-routing RRD with load L of R which 
contains only the (2,2) RD-paths of R. According to 
Proposition 5, the (2,2) RD-paths coloring problem in 
Mm,n is the same as the multicoloring problem of 

2 2m nP P− − . Moreover, it is known that 2 2m nP P− −  is a 
2-dimension mesh of order (m-2)×(n-2), thus the 
chromatic number of 2 2m nP P− −  is 2. So, according to 

Theorem 1, we get χp( 2 2m nP P− − ) ≤ W. Theorem gives 

us W = L and as W ≤ χp( 2 2m nP P− − ), we obtain 

χp( 2 2m nP P− − ) = W. 

    Weighted 

conflict graph 

    Weighted 

conflict graph 



Therefore, for coloring all paths of RRD, we use at most 
L colors. Again, for symmetrical reason, we can use a 
new set of L colors for coloring the paths of RLD. 
Consequently, for coloring all paths of R, we use at 
most 2L colors. 
 
4.3 α=3 AND β=2 OR 3 
 
Proposition 10 
If α=3 and β =2 or 3 then there exists a polynomial time 
algorithm that colors any (α,β) LC-routing R on the 
mesh Mm,n using at most 3L(Mm,n,R) colors. 
 
Proof 
Consider a  (α,β) LC-routing R with load L on the mesh 
Mm,n where α = 3 and β = 2 or 3 . For proof, without loss 
of generality, we take β = 2. First, let RRD be the RD 
path subset of R. Using Proposition 5, the weighted 
conflict graph corresponding to RRD is 2 2

3 3m nP P− − . Note 

that 2 2
3 3m nP P− − = (V,E) with V = {(i,j)|0 ≤ i ≤ m-4; 0 ≤ j 

≤ n-4} and E={((i,j),(i± r,j));((i,j),(i,j±r))|(i,j)∈V;1 ≤ r ≤ 
2}. Moreover, for each vertex (i,j) of V, we assign it the 
color (i+j)  mod(3). In addition, if (i,j) and (i± r,j) have 
the same color we obtain i+j = i+j±r mod(3), this gives 
r=0 mod(3), a contradiction because 1 ≤ r ≤ 2. Hence, 
(i,j) and (i±r,j) have no color conflicts. Therefore, 

2 2
3 3m nP P− − has a vertex coloring in three colors{0,1,2}. 

According to Theorem 1 and Theorem 2, we get 

χp( 2 2
3 3m nP P− − ) ≤ 3

2
L. Then, the path coloring of R 

needs at most 3
2

L colors. As the LU-paths are not in 

conflict with the RD-paths, we can use the same colors 
set to color them. Similarly, for coloring the RU-paths 

and the LD-paths we use a new class of 3
2

L colors. So, 

for coloring all paths of R, we can use at most 3L colors. 
 
4.4 α=β IS ARBITRARY  
 
We saw in Proposition 5 that the (α,β) XY-path 
coloring problem is the same as the multicoloring 
problem of  1 1

m nP Pα β
β α

− −
− − . Thus,  according to the 

following theorem 2, we can color all paths of any (α,α) 
XY-routing of load L using at most 2L colors.  
 
Theorem  3 (KCHIKECH and TOGNI [5]) 
Let G= m nP Pα α . For any weighted graph Gω of G, there 
exists a polynomial time algorithm which multicolors 
all vertices of  Gω using at most 2W colors. 
 
Theorem  4 
There exists a polynomial time algorithm that colors any 
(α,α) XY-routing R on the mesh Mm,n using at most 
2L(Mm,n, R) colors. 

Proof 
Proposition 5 gives us λ(Mm,n, R)=χp( 1 1

m nP Pα α
β α

− −
− − ). 

According to Theorem 3 and to Proposition 4 we get 
λ(Mm,n, R) ≤ 2L(Mm,n, R). 
 
Corollary  1 
There exists a polynomial time algorithm that colors any 
(α,α) LC-routing R on the mesh Mm,n using at most 
4L(Mm,n, R) colors. 
 
Proof 
As λ(Mm,n, R) ≤ λ(Mm,n, RRD) + λ(Mm,n, RLD), we get   

λ(Mm,n, R) ≤ 4L(Mm,n, R) 
 
5 COLORING LC-ROUTINGS ON THE 
TOROIDAL MESH 
 
Theorem  5  (KCHIKECH and TOGNI [6]) 
Let I be an instance on the toroidal mesh TMm,n. For any 
LC-routing R realizing I with load L=L(TMm,n, R), there 
exists a LC-routing R ' on Mm,n realizing I with load L' ≤ 
2L and there exists a polynomial time greedy algorithm 
which colors all paths of R ' using at most 4L' ≤   
8L(TMm,n, R)) colors. 
 
For case where R contains only (α,β)-paths, we have the 
following result: 
 
Proposition 11 
The (α,β) XY-path coloring problem on the toroidal 
Mesh TMm,n where X∈{R,L} and Y∈{U,D} is the same 
as the multicoloring problem of  1 1

m nC Cα β− − . Where 
1

mCα − is the (α-1)th power of the cycle mC of order m. 
 
Proof 
For this proof, we proceed in the same way as for the 
proof of Proposition 5. 
 
6 COLORING (LC,CL)-ROUTINGS 
 
Theorem  6 
Let G be a mesh or a toroidal mesh. If there exists a 
polynomial time p-approximation algorithm to color any 
LC-routing in G then there exists a polynomial time 2p-
approximation algorithm to color any (LC,CL)-routing 
in G. 
 
Proof 
Let X∈{R,L} and let Y∈{U,D}. Suppose that one can 
color XY-paths of R with no more than pL colors. Then, 
by symmetry, we can color the YX-paths with another 
set of at most pL colors. 
 
Corollary  2 
There exists a polynomial time 8-approximation 
algorithm that colors any  (α,α) (LC,CL)-routing in 
Mm,n. 



 
Corollary  3 
For any  LC-routing R in the toroidal mesh TMm,n, there 
exists a (LC,CL)-routing R' such that there is a 
polynomial time algorithm that colors all paths R', using 
at most 16L (TMm,n, R) colors. 
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